|
: ''This article is about the heuristic algorithm for the graph partitioning problem. For a heuristic for the traveling salesperson problem, see Lin–Kernighan heuristic.'' Kernighan–Lin is a O(n2 log(n)) heuristic algorithm for solving the graph partitioning problem. The algorithm has important applications in the layout of digital circuits and components in VLSI.〔〔 ==Description== Let be a graph, and let be the set of nodes and the set of edges. The algorithm attempts to find a partition of into two disjoint subsets and of equal size, such that the sum of the weights of the edges between nodes in and is minimized. Let be the ''internal cost'' of ''a'', that is, the sum of the costs of edges between ''a'' and other nodes in ''A'', and let be the ''external cost'' of ''a'', that is, the sum of the costs of edges between ''a'' and nodes in ''B''. Furthermore, let : be the difference between the external and internal costs of ''a''. If ''a'' and ''b'' are interchanged, then the reduction in cost is : where is the cost of the possible edge between ''a'' and ''b''. The algorithm attempts to find an optimal series of interchange operations between elements of and which maximizes and then executes the operations, producing a partition of the graph to ''A'' and ''B''. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Kernighan–Lin algorithm」の詳細全文を読む スポンサード リンク
|